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A first-principles framework for calculating the rates of charge carrier scattering by defects in semiconduc-
tors is presented. First a quantitative formalism is outlined, followed by the development of an approximate
relative formalism that allows rapid assessment of the effects of different defects on carrier transport in given
materials. Representative results are presented that demonstrate the applicability of the relative formalism,
which achieves a three to four orders of magnitude reduction in computational cost compared to the full
quantitative calculation. The differences between the two formalisms are discussed in light of average carrier
scattering by a defect, differences between electron and hole scattering, and variations of the scattering matrix
elements throughout the Brillouin zone. Results and analysis are presented within the Born approximation for
carrier scattering, which is applicable in the absence of strong interactions between scattering centers �i.e., the
dilute limit�. The theory as presented can be extended to interacting defects without modification if they can be
represented as a set of unit defect clusters/complexes without long-range correlated interactions between them.
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I. INTRODUCTION

The effect of defects �e.g., dopants or impurities� on car-
rier transport in semiconductors is of paramount importance
for many practical applications.1,2 For example, one may be
interested in selecting optimal dopants or codopants to ma-
nipulate conductivity while also controlling the impact on
carrier mobility, or one may wish to identify the most detri-
mental impurities in a material for targeted purification ef-
forts. A predictive understanding of how different defects
and combinations of defects modify a material’s transport
properties is required to achieve such goals. Traditionally,
much of the utility of semiconducting materials stems from
the ability to use dopants to vary the conductivity of a ma-
terial over a wide range.1,2 The ability to also engineer carrier
transport characteristics, such as mobility, alongside proper-
ties such as conductivity and band gap, is highly desirable
for the realization of many electronic and optoelectronic de-
vices. Optimal device performance often critically depends
on the ability to understand and control the concentrations of
assorted defects in a material resulting from highly sensitive
growth and fabrication processes.

Here, we present a predictive theoretical framework to
assess the effects of defects on carrier transport in semicon-
ductors. The problem is examined from the point of view of
scattering by defects, with the goal of establishing an accu-
rate and efficient methodology for computational defect en-
gineering, to enable the optimization of carrier transport con-
comitantly with other desired properties of a material. We
present a quantitative formalism for evaluation of carrier
scattering from first principles, then develop an approximate
relative formalism which we show well-represents the rela-
tive behavior of different defects in a given material or simi-
lar materials with a significantly reduced computational cost.
Illustrative results for a set of impurities in AlSb are used to
compare different levels of approximation and to discuss dif-
ferences in light of variations of the scattering matrix ele-
ments throughout the Brillouin zone as well as differences
between electron and hole scattering. The theory as pre-

sented applies to the dilute defect limit or the limit of dis-
persed localized defect clusters �i.e., those that can be repre-
sented, for example, by a supercell model�.

II. METHODS

A. Carrier scattering formalism

Defects perturb the electronic structure of an otherwise
perfectly periodic crystal and act as scattering centers for
electrons and holes traveling through the crystal. Fermi’s
Golden Rule can be used to obtain the rate of scattering of
electrons from an initial state �i� into a final state �f� through
a scattering potential �V as

Ri→f =
2�

�
��f ��V�i��2���i − � f� , �1�

where �i and � f are the energies of the initial and final states,
respectively. The delta function indicates that the scattering
is elastic. The use of Fermi’s Golden Rule invokes the Born
approximation, which implies that the scattering potential is
treated as a perturbation �see further discussion in Sec. IV�.
To treat the scattering from first principles, the states and
scattering potential are determined with an ab initio theory,
such as density-functional theory �DFT� or beyond. Strictly,
the scattering potential �V is the difference between the
Hamiltonian operators of the ideal and the defect-containing
system; however it is well approximated by the difference of
the self-consistent local potentials between the defective and
the ideal systems3 �including both the electrostatic and
exchange-correlation contributions, and full relaxation of the
defect-containing system�. Within first-order perturbation
theory, the states �i� and �f� are taken from the unperturbed
system.

The total scattering rate out of state �i�, or equivalently the
inverse lifetime of the state in the spirit of the relaxation time
approximation for carrier transport, is obtained by summing
over all possible final states for elastic scattering from state
�i�.3,4 This summation amounts to an integration over the
Brillouin zone via
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R̃nk =
1

�nk
= cdef�

n�
� d3k�

�2��3Rnk→n�k��1 − cos �� , �2�

where cdef is the density in the crystal of the defect under
consideration �assuming a distribution of independent scat-
tering centers�, �i�= �nk� and �f�= �n�k�� have been written
with explicit band �n� and k-point �k� indices, and � is the
scattering angle �i.e., the angle between the group velocity
vectors of the respective states, where the group velocity is
obtained from the band structure via vnk= 1

��k�nk�.5
The transport coefficients can then be obtained, for ex-

ample, from the linearized Boltzmann equation by an addi-
tional Brillouin zone integration.3,4 The result for the carrier
mobility in a direction � for an applied electric field in the
direction 	 is given by


�	 = −
2e

ncarr
�

n
� d3k

�2��3�nk�vnk · �̂��vnk · 	̂�� � f0

��
�

�nk

,

�3�

where ncarr is the carrier concentration, �nk is given by Eq.
�2�, f0 is the Fermi distribution, and the factor of 2 accounts
for spin �assuming non spin-polarized currents�. The factor
�f0 /�� in Eq. �3� indicates that only states near the band edge
contribute significantly to the transport properties �i.e., only
near the band edges do occupied initial states exist with ap-
propriate available empty states into which to scatter�.6

The calculation of Eq. �2� is quite computationally expen-
sive, and the result converges slowly with the number of k
points. To address this shortcoming, we developed an ap-
proximate form of the scattering strength which can be
evaluated very rapidly. From inspection of the matrix ele-
ments in Eq. �1� and recognizing that the states �i� and �f� are
always orthogonal �we are guaranteed that �i�� �f� since a
given state cannot scatter to itself�, we observe that contri-
butions to the matrix elements come only from regions in
space where �V has a gradient; any DC component of �V
will not affect the scattering rate. Therefore, we define a
heuristic measure for the relative carrier scattering strength
of a defect as

M =� ��r��V��dr , �4�

where M essentially measures the extent of the potential per-
turbation caused by the defect. Then, the average scattering
rate will be approximately proportional to M2. Since the ap-
proximate formalism in Eq. �4� does not incorporate infor-
mation from the band structure, it does not distinguish be-
tween electron and hole scattering, as in Eqs. �2� and �3�.
Also, this approximate formalism can only be used to com-
pare different systems insofar as the set of unperturbed wave
functions that enter the matrix elements in Eq. �1� are
equivalent or similar. Thus, the formalism of Eq. �4� may be
used to compare defect carrier scattering in a given material
or similar materials �for example, materials with identical or
similar crystal structures�. Care should be employed when
comparing very different materials which may have qualita-
tively different unperturbed wave functions.

We have implemented both of the above formalisms
within the projector augmented wave8 �PAW� framework us-
ing the VASP code.9–12 In the PAW formalism, the matrix
elements in Eq. �1� have the form

�� f��V��i� = ��̃ f��V��̃i� + �
n,m

��̃ f�p̃n�V̂nm�p̃m��̃i� , �5�

where

V̂nm = ��n��V��m� − ��̃n��V��̃m� . �6�

In Eq. �5�, ��̃� indicates the “soft” plane-wave part of a wave
function ���, and �p̃n� are the PAW projector functions. In Eq.
�6�, ��� and ��̃� are the all-electron partial waves and pseudo
partial waves, respectively, within the augmentation regions.
Further details of these terms and the PAW method are found
in Ref. 8. Because �V is local and confined within the su-
percell �see Sec. IV for further details�, the spatial integra-
tions need only be performed over a single supercell when
done in real space.

We use the formalisms above to assess the effects of vari-
ous defects and impurities on the transport properties of
given materials. In this paper, the electron and hole mobili-
ties will be used as an illustrative example. In principle, we
at least need to calculate the average scattering rates given by
Eq. �2� for all relevant states representing conducting chan-
nels at the operating temperature �e.g., for electrons, all
states within 	3 kBT, or 78 meV at room temperature, of the
bottom of the conduction band�. Alternatively, the average
scattering rates can be approximated using Eq. �4� with much
less computational expense. A more accurate assessment
would be based on the full calculation represented by Eq.
�3�, from which concentration-dependent electron and hole
mobilities can be calculated for each defect or impurity un-
der consideration, in order to compare them based on the
actual concentrations of each impurity. The total mobility of
a material containing multiple types of �noninteracting� de-
fects is calculated by combining the separate results via

total

−1 =�i
i
−1, where each 
i is evaluated at the respective

defect concentration cdef,i. We test and compare the applica-
bility of each of these approaches in this paper.

B. Computational details

The calculations presented in this paper were conducted
using density functional theory within the local density ap-
proximation �LDA�, using the VASP code.9–12 The calcula-
tions were performed with 64-atom cubic supercells of the
zinc-blende structure of the test case material, AlSb. The
LDA-relaxed lattice constant of 6.1213 Å was used.13 The
projector augmented wave method was used, with the energy
cutoff for the plane-wave part of the wave functions set to
500 eV. The density of the FFT grid, and the corresponding
real-space grid upon which the plane-wave part of the local
potentials was defined, was typically 160
160
160, or
4.5
10−4 Å3 per grid point. Within the augmentation
spheres, the grid density was doubled in each direction.
Atomic relaxations were performed using a 6
6
6
Monkhorst-Pack k-point mesh14 until all forces were below
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20 meV /Å. Gaussian smearing with a width of 0.1 eV was
used for Brillouin zone integrations of the energy and forces.
The evaluation of local potentials was performed with the
same k-point grid and included the contributions from both
the electrostatic terms and the exchange-correlation terms.
For charged defect calculations, a homogeneous background
charge was included �by omitting the G=0 term in the po-
tential� to ensure charge neutrality of the entire cell.

C. Comments on computation

The root of the computational burden of Eq. �2� is that a
brute-force evaluation of the integral requires a dense k point
mesh throughout the entire Brillouin zone. The dense mesh is
required to smoothly sample the complicated constant-
energy elastic scattering isosurfaces in the three-dimensional
reciprocal space, while accurately capturing variations of the
scattering matrix elements as a function of �nk ,n�k�� �for
example, as shown later in Fig. 2�. The brute force integra-
tion can be simplified by pre-screening the band structure for
the relevant conduction pockets �identifying the neighbor-
hoods of band minima up to several kBT� and restricting the
computation to this subset of reciprocal space. This approach
allows a finer sampling of the Brillouin zone in the regions
that contribute significantly to the integral without wasting
computational resources on a uniform sampling of the entire
Brillouin zone. Alternatively, interpolation schemes can also
be employed to improve convergence of the integral when
only a coarse grid of k points is tractable. For example, linear
interpolation of the matrix elements between computed
points can be used, or a more sophisticated scheme based on
Wannier function interpolation of the matrix elements can
lead to improved results.15–17 An approximate simplification
of Eq. �2� is also possible by employing an effective mass
approximation to replace the � function in Eq. �1� with an
analytical density of states and using a set of averaged con-
stant matrix elements for each relevant conduction valley.18

However, this last approach can miss features of the band
structure affecting transport, and also detracts somewhat
from a fully first-principles scheme by employing a param-
etrized model.

A comment is also in order regarding the construction of
the �V perturbation potential. Since in practice we perform
plane-wave DFT calculations for the ideal and perturbed sys-
tems and subtract the self-consistent potentials �defined on
discrete grids� from the two calculations to obtain �V, care
must be taken to ensure that no coordinate shift is introduced
in the perturbed structure after atomic relaxation has been
performed. Any shift of the center of mass of the “host”
atoms surrounding the defect region relative to the center of
mass of the ideal system will introduce regular oscillations in
�V, which will accumulate in the calculation of the scatter-
ing matrix elements. We have systematically investigated the
magnitude of this effect by taking as the perturbed system a
perfect crystal with a shifted origin and calculating the scat-
tering matrix elements for several scattering channels
throughout the Brillouin zone. We find as an empirical rule
of thumb that center of mass shifts as small as 	0.02 Å can
contribute up to 0.1 eV or more �	25% or more� to the

matrix elements. Any center of mass shift in the coordinates
should be kept to �0.005 Å to avoid biasing the results. In
practice, this is best achieved by fixing the positions of sev-
eral atoms far from the defect during the relaxation. In the
calculations presented here, the residual center of mass shift
of the host atoms was always less than 10−6 Å.

III. RESULTS

We present results for a representative test case of a range
of impurities in the zinc-blende semiconductor AlSb.13,19 We
have computed the values of the scattering matrix elements
�f ��V�i� for a variety of relevant scattering channels through-
out the Brillouin zone and also the corresponding relative
scattering rates M2 from Eq. �4� for comparison. In addition,
we have also performed the full calculations of Eqs. �2� and
�3�. We will show below that the approximate calculations
using Eq. �4� very well reproduce the relative scattering rates
found from the detailed calculations, while requiring 3 to 4
orders of magnitude less computing time.

To analyze the carrier scattering of different defects using
the formalisms presented above, we first examine the band
structure to determine the dominant conduction channels for
electrons and holes. AlSb is an indirect band gap semicon-
ductor, with the conduction band minimum at 	90% toward
X from � and another minimum at the L point 160 meV
higher �	6 kBT at room temperature�, as shown by the band
structure in Fig. 1. The valence band maximum is at �,
where the heavy hole �HH� and light hole �LH� bands are
degenerate. The main conduction channel for electrons is in
the X valley, with a minor contribution from the L valley that
becomes more important as the temperature is elevated.
Holes conduct through the HH and LH bands near �.

We have calculated the scattering matrix elements for
various scattering channels within 2 kBT of the conducting
channel minima for electrons and holes, for various impuri-
ties in AlSb. The range of scattering channels considered
span the three-dimensional space of the Brillouin zone. For
example, for the X electron valley, there are scattering chan-
nels connecting nearby k points within the valley, as well as
“g-type” 
e.g., �0,0 ,��→ �0,0 ,−��� and “f-type” 
e.g.,
�0,0 ,��→ �0,� ,0�� scattering channels. A similar set of scat-
tering channels exists for the L valley. For holes, there are
scattering channels both within and between the HH and LH
bands.
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FIG. 1. Band structure for AlSb within the local density approxi-
mation. The valence band maximum �VBM� energy was set to zero.
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Figure 2 shows the variation of the magnitude of the scat-
tering matrix element for selected electron and hole scatter-
ing channels for the GeSb

−1 impurity in AlSb, as an example.
The specific k points involved in the selected transitions are
given in the figure caption and represent the dominant elastic
scattering channels near the respective band edges through-
out the Brillouin zone. The most important electron scatter-
ing channel for low to moderate temperatures �e.g., room
temperature� is around the conduction band minimum at the
X valley, including f-type and g-type scatterings. Scattering
that involves the L valley is stronger, but plays a significant
role only at elevated temperatures. Hole scattering is seen to
be dominated by heavy hole scattering at the � valence band
maximum, with very little probability of scattering between
heavy and light hole bands. Heavy hole and light hole states
only couple away from �, where there is significant mixing
of wave function character. Scattering of light holes is simi-
lar in magnitude to that of electrons, since the effective
masses are similar. In general, hole scattering is stronger than
electron scattering.

The Brillouin zone-averaged values of the scattering ma-
trix elements for the whole set of impurities are shown in
Figs. 3�a� and 3�b�. The individual matrix elements for a
given defect vary by up to 30% from the average between
different channels. Within small neighborhoods of k-space,
relatively smooth variations of the matrix elements were ob-
served �see, for example, Fig. 2�. The scattering rates in Figs.
3�a� and 3�b� are generally higher for holes than for elec-
trons, indicating a lower hole mobility than electron mobility
due to a higher hole effective mass compared to electrons.
The difference between electrons and holes, however, is not
very dramatic, which is consistent with empirical measure-
ments of the hole mobility in this material being within about
a factor of two of the measured electron mobility, for high
quality material.20–22

We can see from the average scattering rates in Figs. 3�a�
and 3�b� that the different impurities scatter carriers by dif-
ferent amounts, and that the relative effects are essentially
the same for electrons and holes. Oxygen by far is the stron-
gest carrier scatterer, and carbon also is a notable scatterer,
especially considering its typically high concentration in ex-
perimentally grown material. As a general rule, a substitu-
tional impurity scatters less the larger its atomic radius,
which is a result of the reduced size mismatch with Sb and
consequently reduced lattice distortion. Oxygen is a very
strong carrier scatterer because it not only has a small atomic
radius, but also grossly distorts the lattice, predominantly
entering either as an interstitial or a highly C3v-distorted
substitution.19

For comparison, Fig. 3�c� shows the approximate relative
scattering strengths calculated via Eq. �4� for the same set of
defects shown in Figs. 3�a� and 3�b�. Comparing to Figs. 3�a�
and 3�b�, we see that the Eq. �4� results are reasonably pro-
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portional to the average scattering rates calculated with the
more detailed formalism. Therefore, the approximate formal-
ism is useful for screening large numbers of defects rapidly
to help categorize defects as mobility killers or benign im-
purities, without a large computational expense.

The average scattering rates are also compared to a full
calculation of the mobility from Eqs. �1�–�3�, shown in Fig. 4
for a select set of defects. In each case only the defect under
consideration is assumed to be present in the material, to
enable comparison of the relative effect of each defect on the
mobility. The carrier density in the material is assumed to
vary with the defect density, according to the doping charac-
teristic �charge state� of each defect. The Fermi level corre-
sponding to a given carrier density is obtained by numerical
integration of the calculated density of states. We have set
the phonon-limited mobility value at low-carrier densities to
700 cm2 /V s, based on a theoretical prediction using defor-
mation potential scattering.21 In Fig. 4�a�, Eqs. �1�–�3� are
evaluated directly, using a uniform k-point mesh to perform
the Brillouin zone integrations. The results using a 5
5

5 uniform k-point mesh of the supercell’s Brillouin zone

and Gaussian smearing of the delta function are shown to
illustrate the convergence with k-point density for a uniform
sampling of the Brillouin zone. Since the discrete sampling

of the Brillouin zone underestimates R̃nk of Eq. �2� by in-
completely counting all contributions to the integral, the cal-
culated mobility is overestimated before convergence with
k-point density is achieved. For the case of hole mobility
shown in Fig. 4, the scattering is confined to a single valley
since the valence band structure exhibits a prominent maxi-
mum at the � point, and we can well approximate the con-
verged result semianalytically using an effective mass ap-
proximation and a single, constant scattering matrix element
�computed near the band maximum�, since the matrix ele-
ments do not vary much within the scattering basin �the re-
sulting formula for the mobility is derived in the Appendix�.
This semianalytical result is shown in Fig. 4�b�, which may
be regarded as an approximation of the fully converged cal-
culation. We see that the coarsely sampled Brillouin zone
integrations in Fig. 4�a� indeed overestimate the mobilities,
but that otherwise the results are comparable. In fact, the
final converged results lie in between these two limits since
the semianalytical approach slightly underestimates the mo-
bility in this case. Finally, comparison with Fig. 3 shows that
the relative scattering strengths computed with Eq. �4� prop-
erly predict the impact on mobility of each defect.

IV. DISCUSSION

The utility and validity of the approximate relative for-
malism of Eq. �4�, compared to the fully quantitative scheme
represented by Eqs. �1� and �2�, is demonstrated in the results
presented above. The success of Eq. �4� in approximating the
average scattering matrix element �on a relative scale� relates
to its interpretation as a measure of the strength of the per-
turbation potential. This measure is valid only if the pertur-
bation is sufficiently local. Particularly, the perturbation po-
tential at least must fit within the calculation supercell and
decay to zero sufficiently far from the cell boundaries. This
requirement is related to the Born approximation, which en-
ables the application of Fermi’s Golden Rule to calculate
scattering rates as long as the scattering potential may be
validly regarded as a perturbation. The criteria which must
be satisfied for the Born approximation to be valid are23

�U� �
�2

ma2 �7�

or

�U� �
�2

ma2ka , �8�

where �U� is the magnitude of the perturbing potential, a is
the �order of magnitude� range of U, m is the reduced mass
of the interacting particles �which, in the present context, is
the carrier effective mass�, and k is the magnitude of the
wave vector. Either of Eqs. �7� and �8� may be satisfied, but
Eq. �7� is more general. While Eq. �7� represents the usual
interpretation that the perturbation potential must be small
compared to the energy scale of interest, Eq. �8� indicates
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on the calculated band structure is used �see the Appendix�. The
phonon-limited mobility value at low densities was set at
700 cm2 /V s, based on a theoretical prediction using deformation
potential scattering �Ref. 21�.
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that the Born approximation is also always valid for suffi-
ciently fast particles when their energies are low compared to
the perturbation.24 A relationship is apparent between the cri-
teria of Eqs. �7� and �8�, where �U�a is an approximate mea-
sure of the extent of the perturbation potential, and the rela-
tive scattering strength M of Eq. �4�.

The criteria of Eqs. �7� and �8� can be used to verify the
applicability of the theory described above for a particular
case. These criteria must hold both for the relative formalism
of Eq. �4� and for the full formalism of Eq. �1�. In practice,
for point defect-related scattering, the condition can almost
always be met by considering a sufficiently large supercell,
provided the density of defects is low enough that collective
scattering does not dominate �typically less than
	1018–1019 cm−3�. In such a case, the perturbation potential
is local and also sufficiently small compared to the energy of
the free carriers �approximately the Fermi level�.

The perturbative approach to carrier scattering employed
here should not be extended to such high-defect concentra-
tion that individual defects can no longer be treated as inde-
pendent scattering centers 
violating the use of the ndef factor
in Eq. �2��. As a rule of thumb, defects begin to interact
strongly at densities greater than at least 1019 cm−3, which is
much higher than the densities we consider in this work. A
defect cluster �e.g., a complex� can be treated as a unit in a
large supercell to capture the effects of local interactions
between the constituent defects, so long as the total defect
density is not so high that long-range correlation between
scattering centers becomes significant. For very high-defect
densities, bandlike transport associated with the defect net-
work may become important as well and is not described by
the perturbative scattering approximation presented here.

Furthermore, the results presented above relate predomi-
nantly to scattering induced by lattice strain from the defects,
as demonstrated by the trends in the results for the substitu-
tional impurities of different atomic radii �Fig. 3 and discus-
sion above�. The electrostatic effects of Coulomb scattering
from charged defects is only included up to a range for
which the dielectrically screened Coulomb potential fits
within the supercell used in the calculations. Since the r−1

tail of the Coulomb potential is long ranged, the supercell
only captures a portion of the total electrostatic interaction
and the Coulomb scattering contribution is underestimated.
However, in the context of the present discussion, we are
mostly interested in a comparison of the scattering effects of
different defects in a given material, for example in a search
for optimal dopants. In this case, we are usually comparing
defects with the same �absolute� charge state, for which the
Coulomb scattering is identical. �Compare the charge states
of the relevant impurities in AlSb shown in Fig. 3.� There-
fore, we can still use the formalisms above to make compara-
tive assessments of the relative scattering rates of different
defects and impurities, despite the absolute underestimate of
the Coulomb scattering. If necessary, one can account for the
full Coulomb contribution to the scattering by simply ex-
tending the �screened� Coulomb potential for charged defects
outside the supercell analytically, use Bloch’s theorem to
construct extended wave functions, and perform the calcula-
tion in an effectively larger supercell with only modest com-
putational overhead.25,26

In addition, we have not explicitly included carrier scat-
tering by phonons in our discussion, since the main interest
of this work is defect engineering. Phonon scattering contrib-
utes a constant upper limit to the transport �see, for example,
Fig. 4�, essentially independent of �point� defect
concentration.26 For the typical range of defect concentra-
tions that can be well-controlled experimentally �cdef
�1014 cm−3�, impurity scattering comprises at least a con-
siderable contribution to the total mobility, if not the domi-
nant contribution.26 From a practical perspective, the analy-
sis of impurity scattering enables the identification of
appropriate targets for material purification, in an attempt to
approach the phonon limit. Nonetheless, if required, the
phonon-limited contribution to the transport may be calcu-
lated and included, using either semiempirical4,27–30 or ab
initio methods.26

V. CONCLUSIONS

We have presented a first-principles framework for calcu-
lating the rates of charge carrier scattering by defects in
semiconductors. From a quantitative formalism based on the
Born approximation, we developed an approximate relative
formalism which is significantly less expensive computation-
ally. We showed good relative agreement between the ap-
proximate calculation and a full calculation. The relative for-
malism is particularly useful for rapidly assessing the
relative effects of different defects or impurities on carrier
transport in a given or similar material�s�, and is suited for
predictive calculations, particularly within density functional
theory. The relative formalism, however, represents only av-
erage scattering and does not distinguish between electron
and hole scattering or reveal the variation of scattering rate
throughout the Brillouin zone. Results were presented for a
representative test case of scattering from various impurities
in AlSb. Evaluations of the scattering matrix elements
throughout the Brillouin zone were presented to show typical
variations with scattering vector and also to compare elec-
tron and hole scattering. The general theory presented is ap-
plicable in the dilute defect limit or in the limit of localized
defect clusters that can be modeled as units without long-
range correlated interactions between clusters.
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APPENDIX: EFFECTIVE MASS MODEL IN A SINGLE
SCATTERING VALLEY

For carrier transport dominated by scattering in a single
valley, such as the case for hole transport in a semiconductor
with a prominent � valence band maximum �no intervalley
scattering possible�, we may reasonably well describe the
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transport using an effective mass approximation of the band
structure. The Fermi occupation factor in Eq. �3� implies that
only scattering very near the band edge will contribute to the
mobility, so we may replace the energy- and wave vector-
dependent scattering matrix element with a single constant
value representative of the relevant intravalley scattering
channel, and define

T = �� f0
��V��i0

� �A1�

as that constant matrix element, where the subscripts f0 and
i0 indicate that a single pair of states is chosen near the
bottom of the valley.

In the effective mass approximation, the parabolic band
dispersion is given by

� =
�2�k�2

2m�
, �A2�

where m� is the density of states effective mass given by
m�= �m1

�m2
�m3

��1/3 with mi
� the effective mass in the ith prin-

cipal direction. Thus,

�k�2 =
2m��

�2 �A3�

and

d�k� =
1

�
�m�

2�
d� , �A4�

Changing variables from dk to d� for the integrals in Eqs.
�2� and �3�, for a parabolic band, gives

� dk → 4�� �k�2d�k� , �A5�

=4�� 
2m��

�2 � 1

�
�m�

2�
d� , �A6�

=
4�2�

�3 �m��3/2� ��d� , �A7�

Then, plugging into Eqs. �2� and �3� and integrating over
energy gives


 =
8�2�

ncarrcdef�
2m�T 2FD��F,T� , �A8�

with

FD��F,T� = �
0

� �

2 kBT
1 + cosh� �−�F

kBT ��d� . �A9�

The upper integration limit in Eq. �A9� runs to �, but the
integral converges rapidly by 	10 kBT. Here, � is the vol-
ume of the supercell.
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